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1 Introduction
In 2000, the Clay Mathematics Institute published the Millenium Prize Problems - a set of
seven open problems which each carry a $1,000,000 prize for their proof or disproof (Jaffe
2005). One of these problems is the P versus NP problem, one of the most famous problems
in theoretical computer science which was introduced in 1971 by Stephen Cook (Cook 1971b).
This problem was a major development in the area of Complexity Theory, which explores
how fast computers are able to compute a program. In this report we explore the development
of Complexity Theory, in particular focusing on the satisfiability problem, which was the first
problem shown to be NP-Complete (Garey and Johnson 1979).

2 Turing Machines

2.1 Deterministic Turing Machines
The first computational models created by computer scientists come from Automata Theory,
which is the study of abstract automata or ‘machines’ (Hopcroft, Motwani, and Ullman 2014).
In the 1930s Alan Turing and Alonzo Church studied a particular type of automata known as
finite-state automata and built on this with the development of the Turing Machine. We
utilise this model due to its flexibility and versatility. There are many variations on the model,
but we begin with the one-tape Deterministic Turing Machine (DTM).

The DTM contains a finite state control, a read-write head, and an infinite sequence
of tape squares, labelled . . . ,−2,−1, 0, 1, 2, . . .. By convention we always set the start of our
input at position 1, which we refer to as the initialisation of our Turing Machine.

finite state
control

tape head

-3 -2 -1 0 1 2 3

Figure 1: A one-tape DTM that has been initialised.

There is also a set number of states that the DTM can be in, which influence the action the
finite state control takes. When the tape head reads a cell, based on the value of the cell and
the state it will do three things:
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• Rewrite the item on the tape head;

• Choose to move the tape forwards or backwards one cell, or stay on the same cell;

• Optionally change the state of the DTM.

We now provide a formal definition.
Definition 2.1. (Garey and Johnson 1979) A program in a one-tape Deterministic Turing
Machine (DTM) is a tuple (Γ, Q, δ) such that:

• Γ is a finite set of tape symbols, including a subset Σ ⊂ Γ input symbols and a blank
symbol b ∈ Γ \ Σ;

• Q is a finite set of states, including a unique start-state q0 and two unique halt-states qY
and qN ;

• δ represents a transition function δ : Q \ {qY , qN} × Γ → Q× Γ× {−1, 0 + 1}.
In our set of tape symbols, the subset Σ is referred to as an alphabet.

For the sake of brevity, in this report we refer to a program in a one-tape DTM as a DTM.
Now that we have defined a program, what is left is to consider the possible set of inputs into
a program:
Definition 2.2. Consider an alphabet Σ = {σ1, σ2, . . . , σn}. We denote Σ∗ to be the set of all
finite strings of symbols from Σ. A language is a subset L ⊆ Σ∗ and an instance or input
is an element x ∈ Σ∗.
Remark 2.3. By convention the string of length 0 is given by ε.

As an example, for the binary alphabet {0, 1} we have

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, . . . }.

2.1.1 Encodings

The physical manifestation of a Turing Machine tends to take the form of either an electronic
computer or a physical tape passing through a tape head. In either case, the tape head can only
read up to two pieces of information. In the case of an electronic TM, either there is electricity
passing through the tape head or no electricity. In the case of a paper tape, there is either a
punched hole or no punched hole. Therefore, for our Turing Machine model to be faithful to a
real-world model, we implement it using the alphabet {0, 1}.

There are many different items that we will want to represent in our DTM, which we need
to represent through this alphabet; we use a process called encoding to represent them.

To represent a number, we note that we can use a representation known as binary. Typi-
cally we use a system called base 10, which means that a number like 354 can be also written
as 3 · 102 + 5 · 101 + 4 · 100. We can represent a number in base 2, or binary, in a similar way:

9 in base 10 = 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

= 1001 in base 2.

We can also represent graphs in binary; for an undirected graph, we can label the vertices
with some indexing set and create a matrix such that

ai,j =

{
1 if there is an edge between vi and vj

0 otherwise

Such a matrix is called an adjacency matrix. We then input it row by row into the TM,
which acts as an encoding for our graph, as shown in Figure 2.
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0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0


v1 v2

v3v4

Figure 2: An adjacency matrix and its corresponding graph.

2.1.2 Decision problems

One use case of the Turing Machine is to solve problems.

Definition 2.4. A decision problem, Π, consists of a set DΠ of instances and a subset
YΠ ⊆ DΠ of yes-instances.

A common way to give decision problems (and how they will be referred to in this report)
is in the instance-problem form. Here is an example decision problem:

Divisibility by four
INSTANCE: A natural number x.
PROBLEM: Is x divisible by 4?

Remark 2.5. Any decision problem describes a language, as the set of yes-instances (given by
instances for which the answer to the problem is ‘yes’) is a subset of all possible instances in Π.

Definition 2.6. Let Σ be the alphabet for a program M in a Deterministic Turing Machine,
and consider an instance x ∈ Σ∗. We say that M halts, computes x or decides x if there
exists T ∈ N such that for all t ≥ T , the state, location and contents of all cells of M after t
steps is equal to that after t+ 1 steps. Furthermore, we say that

• M accepts x if M halts on state qY ;

• M rejects x if M halts on state qN ;

• The language LM recognised by M is given by the set

LM = {x ∈ Σ∗ : M accepts x}

Example 2.7. We can compute the decision problem Divisibility by four using a Turing
Machine.

Set Σ = {0, 1} and let Q = {q0, q1, q2, qY , qN}. Lastly, set our transition function as below:

0 1 b
q0 (q0, 0,+1) (q0, b,+1) (q1, 1,−1)
q1 (q2, 0,−1) (qN , 1,+1) (qN , b,+1)
q2 (qY , 0,+1) (qN , 1,+1) (qN , b,+1)

Table 1: A table of the transition function for M . An output from the transition function is
taken by taking the input symbol along the top row and the current state along the left hand
column and reading the corresponding cell.

Consider the number 28. We know that 28 is equal to 7 times 4, so it should return a
successful result. Indeed, it does:
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Current state Tape Transition function

q0 b 1 1 1 0 0 b (q0, 1,+1)

q0 b 1 1 1 0 0 b (q0, 1,+1)

q0 b 1 1 1 0 0 b (q0, 1,+1)

q0 b 1 1 1 0 0 b (q0, 0,+1)

q0 b 1 1 1 0 0 b (q0, 0,+1)

q0 b 1 1 1 0 0 b (q1, b,−1)

q1 b 1 1 1 0 0 b (q2, 0,−1)

q2 b 1 1 1 0 0 b (qY , 0,+1)

SUCCESS

By inspection of the transition function, it can be seen that the program recognises the
language

LM = {x ∈ {0, 1}∗ : The two rightmost symbols of x are both 0}.

2.2 The multitape DTM
From our initial computational model, we would like for there to be a variety of uses for the
Turing Machine. While implementing this, we run into a rather striking problem; the time
taken for computations for larger languages grows considerably.

Increasing the size of the alphabet is not feasible, so we instead introduce a DTM on
multiple tapes. These have separate read and write heads, though there is still only one finite
state control.

finite state
control

Figure 3: A 3-tape DTM. The tape heads all move independently, but the DTM only works in
one state at any time.
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Definition 2.8. A program in a k-tape DTM is a tuple (Γ, Q, δ) such that:
• Γ is a finite set of tape symbols, including a subset Σ ⊂ Γ of input symbols and a unique

blank symbol b ∈ Γ \ Σ;

• Q is a finite set of states, including a unique start-state q0 and two unique halt-states qY
and qN ;

• δ represents a transition function δ : Q \ {qY , qN} × Γk → Q× Γk × {−1, 0, 1}k.
We note that Definition 2.6 also holds for a k-tape DTM, and therefore we do not need to

redefine computation on such machines. We motivate the importance of existence of k-tape
DTMs with the following example, which computes on 2 tapes.
Example 2.9. (Palindrome checker) Consider the following decision problem:
Palindrome
INSTANCE: A string x ∈ {0, 1}∗.
PROBLEM: Is x a palindrome?

Here we say x is a palindrome if it reads the same forwards as it does backwards. So
100111001 is a palindrome, but 10010 is not.

We use a 2-tape DTM to compute this. The first tape is an input tape which takes in an
input, and the second is a work tape which does the majority of calculations. A sketch of a
transition function is given below based on the function given in (Arora and Barak 2009):

1. Input x on the input tape, and set the work tape to only consist of blank symbols. Initialise
the tape at the first symbol of our input.

2. Copy the number from the first tape onto the second tape.

3. Move the tape head to the very left on the input tape, and to the very right of the work
tape.

4. Begin comparing the symbols in both tapes. If they are not the same, reject the input.
Otherwise, move the input head to the right and the work head to the left and repeat as
before. Continue until state (b, b) is reached, at which point the input must have been read
the same way forwards as backwards, so accept the input.

We end this section on DTMs with an important lemma:
Lemma 2.10. (Sipser 2013) A k-tape DTM can compute a language L if and only if a one-tape
DTM can also compute L.

2.3 The Church-Turing thesis
Lemma 2.10 shows that any one-tape DTM and any k-tape DTM can compute the same set of
languages. A natural question to ask is if this is true for all computers. This was hypothesised
to be true by Turing and Church:
The Church-Turing thesis. (Turing 1937) A language can be computed by some Turing
machine if and only if it can be computed by some machine of any other ‘mechanical’ model of
computation.

This thesis is left deliberately unclear; instead of rigour Church and Turing are aiming to
capture a sense of what it means for something to be a computer. We use the term Turing
complete to refer to something that can complete actions that a traditional tape can as well.
In particular, this now means we do not need to always resort to going to a fundamental
computation at tape level, so long as we ensure that we maintain a sufficient level of rigour in
our calculations.
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2.4 Nondeterministic Turing Machines
We now turn to nondeterministic machines. A nondeterministic Turing Machine has a similar
structure to that of a DTM with one key difference; instead of a transition function which
uniquely determines the next state, position and adjusts the read symbol, there is a transition
relation, which gives a choice of state, new tape symbol, and change of direction to go to.

Definition 2.11. A program in a nondeterministic Turing Machine (NDTM) is a tuple
(Γ, Q, δ) such that:

• Γ is a finite set of tape symbols, including a subset Σ ⊂ Γ of input symbols and a unique
blank symbol b ∈ Γ \ Σ;

• Q is a finite set of states, including a unique start state q0 and two unique halt states qY
and qN ;

• δ represents a transition relation, where, given an input state q and tape symbol X,
δ(q,X) is the set of tuples

{(qk1 , Y1, D1), (qk2 , y2, D2), . . . , (qkn , yn, Dn)}

where qki represents a new state, Yi represents a number to rewrite on the current tape
position, and Di represents a direction (given by −1, 0 or +1) to shift the tape head.

The NDTM makes a random choice of transition function. We refer to a sequence of these
choices (that begins with the first transition in the computation) as a branch of the compu-
tation. We now provide a formal definition of accepting and rejecting in a nondeterministic
TM.

Definition 2.12. Let Σ be the alphabet for a program M in a nondeterministic Turing Machine,
and consider an instance x ∈ Σ∗. We say that M halts, computes x or decides x if there
exists T ∈ N such that for all t ≥ T , the state, location and contents of all cells of M at step t
is equal to that at step t+ 1 in all branches of the computation. Furthermore, we say that:

• M accepts x if there exists some branch of M that halts on qY ;

• M rejects x if all branches of M that halt on qN ;

• The language LM recognized by M is given by the set

LM = {x ∈ Σ∗ : M accepts x.}

Definition 2.13. We say that an NDTM program M is a decider if M halts for any instance
x in M .

We note that the key distinction between a nondeterministic and deterministic Turing Ma-
chine is the presence of a choice of transition. This yields an important question of whether or
not NDTMs are inherently more powerful than DTMs. To show that this is not the case, we
can visualise the set of all possible computations on an input x as a tree, as given in Figure 4.

An accepting computation on x is a branch of the NDTM with finite height. To find an
accepting computation on x, we use a breadth-first search. This involves starting at the root
node, checking its children, and then checking its grandchildren. This process continues until
we find a point at which state qY is reached. The formal proof for this is given below.
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qN

qN ... ... ...

qN qN qN

qY ...

qN
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Figure 4: A graph of a nondeterministic computation alongside a deterministic computation.
A branch of the computation that does not halt is indicated by .... For all branches, only the
halting state is shown.

Theorem 2.14. Any language can be recognised by a program in a deterministic TM if and
only if it can be recognised by a program in a nondeterministic TM.

Proof. ( =⇒ ) We can express the transition function of a DTM as the transition relation of
an NDTM which contains a single branch.

( ⇐= ) We will design a multitape DTM that computes this. Without loss of generality
construct an arbitrary ordering in each set of tuples within the transition relation. In the DTM
set the first tape to be an input tape, the second to be a tape of ID’s, and the third to be a
scratch tape. In the beginning, there will be 1 ID (the ‘root’ node of the tree of nondeterministic
computation), and as always we begin at the first symbol of the input.

The transition function is given in the following way:

1. Examine the state and scanned symbol of the current ID. If it halts on state qY , we are
done.

2. Otherwise, consider the transition relation given for the respective state and tape symbol,
for which there will be k possible options. Append k IDs at the end of the ID list.

3. Bring the tape head back to the current ID, erase it and go to the next tape head.

The above acts as a breadth-first search through all possible values of the TM, so if the
NDTM program accepts an input, so must the constructed DTM program.
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3 Time complexity
We have now formalised our concept of computation. Before we continue, let us motivate the
rest of this report with a proposition:

Proposition 3.1. For any a, b > 1, there exists an integer N such that for all n > N ,

an > nb.

f(x) = x3

f(x) = ex

x

f(x)

Figure 5: A graph of f(x) = ex against f(x) = x3. Even though ex is smaller than x3 at first,
it eventually becomes much larger than x3.

It is important for the programs in Turing Machines we design to be as fast as possible.
The assertion arising from Proposition 3.1 means that if a program in a DTM were to take
a polynomial amount of time, it will eventually be much faster than a program that takes
an exponential amount of time. The area of study that explores how fast a language can
be computed is referred to as Complexity Theory, which we spend the rest of this report
formalising.

Definition 3.2. Let M be a program in a DTM, and let x be an instance that halts in M .
Denote the time used to compute an instance x as tM(x), defined to be the number of steps M
takes to compute x. If all instances x ∈ Σ∗ in M halt, the time complexity of M for input
length n is defined by

TM(n) = max{tM(x) : x ∈ Σ∗ and |x| = n}.

Definition 3.3. (DTIME) A language L is in DTIME(T (n)) if there exists a DTM M that
runs with time c · TM(n) for some constant c > 0 and computes all instances x ∈ L.

Remark 3.4. Remark 2.5 notes that a decision problem can be used to describe a language.
We refer to a decision problem Π as being in a complexity class if the language it describes is
in that complexity class.

Intuitively, DTIME exists with the aim to classify a complexity class. We motivate this
with some examples:

8



Example 3.5. Here are some examples of time complexities and their respective DTIME
classes. For all of these, L is a language, with all instances x ∈ L having size |n|.

• If TM(n) = n2 + log n+ 1, L ∈ DTIME(n2).

• If TM(n) = 2n + n2, L ∈ DTIME(2n).

• DTIME(ni) ⊆ DTIME(ni+j) for all i, j > 0.

Remark 3.6. In Definition 3.3 it should be noted that there is no requirement that the most
efficient computation acts in the time specified - only that there exists a DTM that acts in that
time. We can therefore have any language in one DTIME class also be in a slower DTIME
class by adding a large number of dummy steps to the end of a computation on an instance.

It is important to note at this point the assertion that DTIME acts as a classifier for all
DTMs independent of the number of tapes in the DTM. The following theorem shows that this
must be the case.

Theorem 3.7. (Papadimitriou 1994) (Linear speedup theorem) If the time complexity for a
k-tape DTM that computes a language L is given by T (n), then the time complexity for a
one-tape DTM that also computes L is at most

T (n)

c
+ 2n+ 3

where c is a constant.

Now that we know all computations on DTMs have a well defined time complexity, we can
begin to classify languages by generalised time complexity.

Definition 3.8. (The class P) P =
⋃

c≥0DTIME(nc).

This stands for Polynomial deterministic time and includes the set of any inputs that
take a polynomial amount of time to run on a program in a DTM. We say that a decision
problem Π is tractable or efficient if all instances in Π are also in P and intractable if not.

Example 3.9. Consider the following decision problem:
Complete graph
INSTANCE: A graph G
PROBLEM: Is G complete?

Recall from Section 2.1.1 that we can encode a graph by its adjacency matrix. We design a
program in a DTM that checks, given a graph G = (V,E), if for any i 6= j, ai,j = 1. This takes
|V |2 − |V | steps (since there are that many entries to check), and so Complete graph is in
P.

3.1 The class NP
We have thus far only looked at determinism. We now turn to nondeterministic TMs and look
at polynomially bound computations on them.

Definition 3.10. Let an NDTM program M with alphabet Γ be a decider, and let x ∈ Γ∗ be an
instance. Denote the time used to compute an instance as tM(x), defined to be the maximum
number of steps that M uses on any branch to compute x. The time complexity of M for input
length n is defined by

TM(n) = max{tM(x) : x ∈ Γ∗ and |x| = n}.
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Definition 3.11. (The class NTIME) A language L is in NTIME(T (n)) if there exists an
NDTM that runs with time c · T (n) for some constant c > 0 and computes L.

Definition 3.12. (The class NP) NP =
⋃

c≥0NTIME(T (n)).

Recalling Theorem 2.14, if an NDTM recognises a language then so must a DTM; our
method for this was by finding an arbitrary branch that accepts the instance. This is incredibly
inefficient (Sipser 2013) and a language in NP cannot be recognised efficiently with a DTM
through this method. Instead of recognising a language, if we instead require a program in a
DTM to accept an instance in polynomial time, this is possible simply by following the branch
that accepts an instance. The DTM that follows this branch is known as a decider.

Proposition 3.13. A language L is in NP if and only if for some input x ∈ L (with |x| = n)
there exists some polynomial p and some DTM M that accepts x with tM(x) < p(n).

Proof. ( =⇒ ) Consider some language l ∈ NP . A verifier for x ∈ l can be given by following
the branch of the computation that accepts it; this takes a polynomial number of steps and we
are done.

( ⇐= ) Consider a language l such that for all x ∈ l, x can be computed in polynomial
time by some program in a DTM. Label these inputs and programs xi and Mi respectively. Set
a transition relation for an NDTM to encompass these transition functions, which accepts all
x ∈ l in a polynomial amount of time, and hence l ∈ NP .

What is left for us is to consider what languages are in P and what languages are in NP .
There is one such relationship that we know of:

Corollary 3.14. P ⊆ NP.

Proof. If a language L ∈ P , then it must have a polynomial time DTM that computes all inputs
in L. Since this runs in polynomial time, we implement it as our verifier which will correctly
show the same result.

4 NP-completeness
The consensus among computer scientists is that P 6= NP (Arora and Barak 2009). This seems
to imply that there exist a set of languages that are fundamentally harder to compute than
others. These languages are known as NP-complete languages and have a property that if
any of them are in P , then so is every other language in NP .

4.1 Polynomial transformations
We will construct the set of NP-complete languages through the use of polynomial transfor-
mations.

Definition 4.1. A polynomial transformation from a language L1 ⊆ Σ∗
1 to a language

L2 ⊆ Σ∗
2 is a function f : Σ∗

1 → Σ∗
2 that satisfies these conditions:

1. There is a polynomial time DTM program that computes f ;

2. For all x ∈ Σ∗
1, we have x ∈ L1 if and only if f(x) ∈ L2.

We write L1 ∝ L2 to indicate that there exists a polynomial transformation from L1 to L2.

Remark 4.2. We say that for two decision problems Π1,Π2, Π1 ∝ Π2 if there exists a polynomial
transformation from Π1 to Π2.
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Figure 6: Two graphs. The first contains a Hamiltonian circuit (via the path (1, 2, 3, 4, 5, 6, 1))
while the second does not.

Definition 4.3. Two languages L1 and L2 are polynomally equivalent if both L1 ∝ L2 and
L2 ∝ L1.

Let us demonstrate this with an example. Here are two decision problems based on graphs
(one unweighted, one weighted):

Hamiltonian Circuit (HC)
INSTANCE: A graph G = (V,E).
PROBLEM: Does there exist a Hamiltonian Circuit in G? (A Hamiltonian Circuit is a path
in G that visits every node exactly once before returning to the original node - see Figure 6 for
an example)

Traveling Salesman (TS)
INSTANCE: A tuple (V,E,m) where (V,E) describes a weighted graph G.
PROBLEM: Does there exist a cycle of G shorter than length m?

Example 4.4. We will show that HC ∝ TS.
Let G = (V,E) be the graph for consideration in HC.
We define f to map G to the weighted graph f(G) = (V,E ′) where the weightings of E ′ are

given by the formula

weight on edge (vi, vj) =

{
1 if (vi, vj) ∈ E

2 if (vi, vj) /∈ E

We set the requirement of cycle length to be at maximum |V |.
Since a complete graph with n vertices has n(n−1)

2
edges, it takes this number of comparisons

to determine the weight of each edge in G′. This takes a polynomial amount of time, and so
the first requirement is satisfied.

We now need to satisfy the second requirement. Consider the path for a tour in G given by
(v1, v2, . . . , vm, v1). This is also a tour in f(G); moreover, since each edge in the tour is in E,
the weights of each edge in the tour must be equal to 1. Therefore, the total length of the tour
in f(G) is given by m = |V | and thus f(G) ∈ TS.

Now suppose that there is a tour in f(G) given by (v1, v2, . . . , vm, v1) with total length
m = |V |. By the construction of f , We know that each edge given by the tour must also be an
edge in G. Hence this is also a valid tour in G, and so G ∈ HC.
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4.2 Constructing the class of NP-complete languages
We now turn to some important lemmas regarding polynomial transformations, which we use
to define the class of NP-complete languages.

Lemma 4.5. If L1 ∝ L2, then L2 ∈ P implies L1 ∈ P (and equivalently, L1 /∈ P implies
L2 /∈ P).

Proof. Let Σ∗
1 and Σ∗

2 be the alphabets of L1 and L2 respectively. Let f : Σ∗
1 → Σ∗

2 be a
polynomial transformation. Finally, let Mf denote a DTM program that recognises f and M2

be a polynomial time program that recognises L2.
We need to construct a DTM program that recognises L1, which can be given by the

composition M2 ◦Mf . Since x ∈ L1 ⇐⇒ f(x) ∈ L2, this program recognises L1.
Now, Mf and M2 are both polynomial DTMs (by the definition of a polynomial transforma-

tion and L2 being contained in P respectively), so their composition must also be a polynomial
DTM. We have therefore found a polynomial DTM that recognises L1, so L1 ∈ P .

Lemma 4.6. (Garey and Johnson 1979) If L1 ∝ L2 and L2 ∝ L3, then L1 ∝ L3.

Definition 4.7. A language L is NP-complete if L ∈ NP and for all other languages
L′ ∈ NP, L′ ∝ L.

Remark 4.8. We say that a decision problem Π is NP-complete if Π ∈ NP and for all other
decision problems Π′, Π′ ∝ Π.

We now state the most crucial theorem of this section.

Theorem 4.9. If L is NP-complete and L ∈ P, then P = NP.

Proof. Since P ⊆ NP , it is sufficient to show that if the conditions of the theorem are satisfied
then NP ⊆ P . Consider some arbitrary language L′ ∈ NP . Since L is NP-complete, L′ ∝ L.
By Lemma 4.5, since L ∈ P , L′ ∈ P and NP ⊆ P as required.

5 Cook’s Theorem
Let us now go about finding NP-complete problems. The first problem shown to be NP-complete
is a problem in Boolean algebra known as the satisfiability problem, proven by Stephen Cook
in 1971. Before we explore the proof, we give some terminology.

5.1 Boolean algebra
Definition 5.1. A variable u is a Boolean variable if u ∈ {T,F}1. The complement of u,
denoted u, is defined by

u =

{
F if u = T
T if u = F

Definition 5.2. Let U = {u1, u2, . . . , um} be a set of boolean variables. Then,

• A clause over U is a set created by choosing at most one element from the sets
{u1, u1}, {u2, u2}, . . . {um, um},

• A truth assignment is a function t : U → {T, F},
1Here T = True, F = False
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• A clause is satisfied by a truth assignment if, under the truth assignment given, at
least one member of the clause is True. A collection C of clauses over U (in Conjunctive
Normal Form) is satisfiable if there exists some truth assignment such that each element
of C is satisfied under that truth assignment.

Example 5.3. Consider the set of boolean variables {u1, u2}. The clause {u1, u2} can be sat-
isfied by any truth assignment such that either of t(u1) = T , t(u2) = F hold.

Now consider the set of clauses {{u1, u2}, {u1, u2}}. This is satisfiable and can be satisfied
by t(u1) = t(u2) = T . On the other hand, the collection {{u1, u2}, {u1, u2}, {u2}} cannot be
satisfied by any truth assignment and so is unsatisfiable.

5.2 The satisfiability problem
We now turn to the satisfiablity decision problem, and Cook’s seminal proof.
Satisfiability (Sat)
INSTANCE: A set U of boolean variables and a collection C of clauses over U
PROBLEM: Is there a satisfying truth assignment for C?

The theorem is now given.

Theorem 5.4. (Cook 1971a) Satisfiability is NP-complete.

Proof. We give a sketch proof based on (Garey and Johnson 1979). First we acknowledge that
Sat ∈ NP , as given a truth assignment that it satisfies C in polynomial time. Thus our first
requirement is met.

For the second requirement, we consider the set of languages LSat which are represented
by Sat. We need to show that for all languages L ∈ NP , L ∝ LSat. As there are an infinite
number of languages in NP , we do not create a transition function between the languages.
Instead we inspect a polynomial time program in a NDTM that recognises them, as these
will have certain distinguishing features. This gives a proof that acts simultaneously for all
languages L ∈ NP .

Consider a polynomial time NDTM program M = (Γ, Q, δ) with alphabet Σ which recog-
nises an arbitrary language L in polynomial time. That is, for any computation of x ∈ L
with |x| = n, there exists some polynomial p such that TM(n) < p(n). Denote the polynomial
transformation we construct by fL, and instead of creating a polynomial transformation from
L to LSat we create a mapping from Γ to instances of Sat. This has the property that for all
instances x ∈ Σ∗, x ∈ L if and only if fL(x) has a satisfying truth assignment.

If an instance x ∈ Σ∗ is accepted by M , then there must exist an accepting computation
such that the number of steps in the checking stage are bounded by p(n). In particular, we
must only utilise the tape squares −p(n) to (p(n). Hence, we can describe the NDTM at time
0 ≤ t ≤ p(n) by:

• The contents of the tape squares;

• The state of M ;

• The position of the read-write head.

Since there are a finite number of these, we can assign them to be boolean variables, for
which we call the variable set U . Label Q = {q0, q1 = qY , q2 = qN , q3, · · · , qr} where r = |Q|−1,
and label Γ = {s0 = b, s1, · · · , sv} where v = |Γ| − 1. Below is a table of the description of the
variables.
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Variable Range Meaning

Q[i, k]
0 ≤ t ≤ p(n) At time t, M is in stage qk.0 ≤ k ≤ r

H[i, j]
0 ≤ t ≤ p(n) At time t, the read-write head is scanning

tape square j.-p(n) ≤j ≤p(n)+1

S[i, j, k]
0 ≤ t ≤ p(n) At time t, the contents of tape square j is

symbol sk.
−p(n) ≤ j ≤ p(n) + 1

0 ≤ k ≤ v

Table 2: A table of the variables and their meanings.

When M computes x, it induces a truth assignment on the variables. The construction of fL
is such that an accepting computation on x in polynomial time will return a truth assignment
that satisfies U . Given this construction, we then have

x ∈ L ⇐⇒ there is an accepting computation of M on x

⇐⇒ there is an accepting computation of M on x that takes p(n) or fewer steps
⇐⇒ there is a satisfying truth assignment for the collection of clauses in fL(x).

This means that fL satisfies one of the two requirements required of a polynomial transfor-
mation. We now complete our description of fL.

Clause group Restriction imposed
G1 At time t, M is in exactly 1 state
G2 At time t, the read-write head is scanning

exactly one tape square
G3 At time t, each tape square contains exactly

one symbol from Γ
G4 At time 0, the computation is in the initial

configuration of its checking stage for input x
G5 By time p(n), M has entered state qY and

hence has accepted x
G6 For each time 0 ≤ t ≤ p(n), the configuration

of M at time t+ 1 follows a single application
of the transition function of M at time t.

Table 3: A table of clause groups and their meanings.

The table of clause groups clearly specifies a truth assignment such that if x ∈ L, then this
truth assignment is satisfied. However, if x /∈ L, then either it must be rejecting or does not
halt (in which case clauses G5 is violated) which does not satisfy the truth assignment. Hence
x ∈ L if and only if there is some satisfying truth assignment for the clause group given above.

What is now left to show is the for a fixed language L, fL(x) can be constructed in time
bounded by some polynomial function of n = |x|. But the choice of our clauses was arbitrary,
so we can adjust the clause group for our satisfying computation.

Our final task is to show that the time taken to encode Sat will be bounded above by some
polynomial. This is easily done; the collection of clauses is polynomial on n, as is the number
of possible sets of clauses, so the size of encoding is also polynomial on n as desired.

Hence, for any language L ∈ NP , fL acts as a polynomial transformation from L to LSat.
It follows that Sat is NP-complete.
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6 Conclusion and further developments
In this report we have introduced and formalised the Turing Machine and demonstrated its
computational effectiveness compared to other mechanical methods of operation. Through this,
the Turing Machine has been shown to compute languages with different complexity classes, of
which we have layed out a foundation to prove whether or not a language is in P or NP .

Following the proof of Cook’s Theorem in 1971, proving the existence of NP-complete prob-
lems became far easier, as if one can prove there exists a polynomial transformation from Sat
to some decision problem Π, then Π is NP-complete by the transitivity of polynomial transfor-
mations. Richard Karp implemented this technique to show that there exist far more problems
that are NP-complete (Karp 1972). These include the vertex cover problem (determining the
minimum number of vertices that are at the endpoint of every edge) and the knapsack problem
(determining, given a set of items with weights and value, the maximum value possible while
keeping the total weight under a certain amount).

While a large focus of complexity theory is on finding methods to show that P = NP , there
have also been methods discovered that could be used towards a proof of inequality. The only
known technique that can be used for this is a technique known as diagonalisation (Arora
and Barak 2009). While a proof or disproof of the famed conjecture is yet to be found, this
technique was used to prove that if P 6= NP , there exist languages that are neither in P nor
NP-complete (Ladner 1975).
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